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A general solution for correcting the collimation error in small-angle X-ray scattering is considered. 
The experimentally obtained intensity function can be expressed analytically as the convolution of 
the correct intensity function and the intensity distribution on the trace of the primary beam in the 
film. The correction of the experimental scattering curve is possible by using the convolution 
theorem for multiple Fourier transforms. 

The effect of imperfect collimation of the pr imary beam 
on the angular intensity distribution of scattered 
radiation at  small angles is called collimation error 
(Yudowitch, 1949a). Several authors have studied the 
possibility of correcting the experimentally obtained 
scattering curve (Jellinek & Fankuchen, 1945; Guinier 
& Fournet, 1947; DuMond, 1947; Shul l& Roess, 1947; 
Franklin, 1950; Kratky,  Pored & Kahovec, 1951). I t  
was shown tha t  the correction is possible only as- 
suming tha t  certain properties are at t r ibuted to the 
energy distribution in the pr imary beam, or to the 
shape of the beam-defining apertures, or to the shape 
of the scattering function. Yudowitch (1949a, b, 1952) 
investigated the geometrical conditions of the collimat- 
ing system under which the collimation error may be 
reduced to its minimum. 

Hosemann (1951) gave a general formula expressing 
the relationship between the experimental scattering 
function I and the correct function Io; the latter would 
be obtainable if an incident parallel beam of infinitely 
small cross section were available. This formula does 
not imply any assumption of the energy distribution 
in the pr imary beam and of the shapes of the collima- 
tion apertures or of the shapes of scattering curves. 
The aim of this paper is to show that  the correcting 
of experimental scattering function I is possible also 
in such a general case, using the convolution theorem 
for multiple Fourier transforms. The method to be 
described is analogous to the method of correcting the 
experimentally obtained line widths and shapes in 
Debye-Scherrer diagrams, proposed by Shull (1946) 
and applied by Stokes (1948). The difference between 
these two methods lies in the fact tha t  the functions 

to be considered in the collimation-error problem are 
two-variable functions, while line-shape correcting 
could be regarded as a one-dimensional problem. 

Let us deduce Hosemann's formula for the case of 
registering the small-angle scattering on a photogra- 
phic film. The rectangle in Fig. 1 represents the trace 
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2 a ~ Pr imary beam t r a c e  

Fig. 1. See t ex t  for explanat ion.  

of the pr imary beam on the film. We want to get the 
intensity of the scattered rays reaching the point 
P(x, 0) on the film equator. A part  of the energy of 
pr imary X-rays falling on the surface element d~d~? 
around the point M is scattered in the specimen 
towards the point P.  The scattering angle of these 
rays is directly proportional to the distance MP.  Thus 
the intensity of these scattered rays is proportional to 
Io(MP), or to Io(x-~,  ~). If we denote the intensity 
distribution function on the trace of the pr imary beam 
by G(~, ~]), the contribution of the examined part  of 
the incident beam to the intensity at point P is 

dI = G(~, ~)I0(x-~,  ~)d~d~. 

We obtain the whole intensity of radiation scattered 
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towards the point P by integration over the area of 
the pr imary beam trace: 

~,+a ~+b 
I(X) = l_~l_bG(~, ~)I0(x--~, ~7)g~d~, (1) 

where the function G is to be normalized, i.e. 

Now, we can express (1) in a more general form: 

The extension of the integration limits is allowable 
owing to the fact tha t  I 0 falls rapidly to zero outside 
the range of small angles. 

The function I(x, y), as expressed by (2), is called 
the convolution, or Falturg I, of the functions of two 
variables I o and G: 

I(x, y) = G(x, y),Io(x, y) . 

To express the function I 0 explicitly we shall use the 
convolution theorem which states tha t  the Fourier 
transform of the convolution of two functions is the 
product of their Fourier transforms (see for instance 
Bochner & Chandraseldaaran, 1949). Now, i, g and i o 
being the Fourier transforms of the functions I ,  G 
and I0, defined by the relations 

i,+oo t*+oo 
i(r, s) = l_,ol_ooI(x, y)e'(r~+'Y)dxdy, 

~.+oo ~.+oo 
g(r, s) ---- l_ool_ooG(x, y)ei(r:c+SV)dxdy, 

io(% 

the convolution theorem may  be expressed as 

i(r, s) = g(r, s) . io(r ,  s) 
or 

io(r, s) = i(r, 8)/g(r, s). 

Applying the inversion theorem for multiple Fourier 
transforms, we obtain 

1 
Io(x, y) ~--~ f ~ :  +°° -- j_off0 (r, s)e-i(z~+Y')drdz. 

Since we are interested in the special case of y = 0, 
we may  write 

1 +oo 
/°(x) = ~ I : :  f-oo i°(r' s)e-~'drdz" (3) 

Equation (3) is the general solution of the collima- 
tion-error problem. In principle, it  makes possible the 
correction of the experimental scattering curve by  
numerical or graphical integration. The usual micro- 
photometering of the diffraction pat tern along the film 
equator gives the function I(x). Since generally I is 
not a radially symmetric function, the function I(x, y), 
i.e. the spatial intensity distribution of scattered radia- 
tion, must be determined from the diffraction pattern.  
I t  can be obtained by microphotometering the diffrac- 
tion pat tern  in several rows, the number of which is 
determined by the requirements of numerical integra- 
tion. Of course, the function thus obtained is to be 
extrapolated over the range of the primary beam trace. 
The function G(x, y) can be deduced mathematical ly 
from the collimation geometry, or experimentally by  
microphotometering the trace of the pr imary beam; 
the trace can be obtained by exposing the bare film to 
pr imary X-rays for a short time. The lat ter  method 
gives only the shape of the desired function; the real 
extent of the trace must  be deduced from the geomet- 
rical conditions of the collimating system. 

In  the case of the pinhole-shaped beam-defining 
apertures, G and I are radially symmetric functions 
and thus the photometering along only one diameter 
is sufficient. 
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